Fuzzy Sets-based Control Rules for Terminating Algorithms

نویسندگان

  • José L. Verdegay
  • Edmundo R. Vergara
چکیده

In this paper some problems arising in the interface between two different areas, Decision Support Systems and Fuzzy Sets and Systems, are considered. The Model-Base Management System of a Decision Support System which involves some fuzziness is considered, and in that context the questions on the management of the fuzziness in some optimisation models, and then of using fuzzy rules for terminating conventional algorithms are presented, discussed and analyzed. Finally, for the concrete case of the Travelling Salesman Problem, and as an illustration of determination, management and using the fuzzy rules, a new algorithm easy to implement in the Model-Base Management System of any oriented Decision Support System is shown.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A learning process for fuzzy control rules using genetic algorithms

The purpose of this paper is to present a genetic learning process for learning fuzzy control roles from examples. It is developed in three stages: the first one is a fuzzy rule genetic generating process based on a rule learning iterative approach, the second one combines two kinds of rules, experts rules if there are and the previously generated fuzzy control rules, removing the redundant fuz...

متن کامل

On Mining Fuzzy Classification Rules for Imbalanced Data

Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...

متن کامل

On Mining Fuzzy Classification Rules for Imbalanced Data

Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...

متن کامل

Fuzzy Logic Control with the Intel 8xc196 Embedded Microcontroller

Fuzzy logic control is being increasingly applied to solve control problems in areas where system complexity, development time and cost are the major issues. In the absence of a system mathematical model , a fuzzy system model is described which is analogous to a human operator’s behavior, based on approximate reasoning bound by a minimum set of rules. A set of linguistic fuzzy control rules ar...

متن کامل

Efficient and interpretable fuzzy classifiers from data with support vector learning

The maximization of the performance of the most if not all the fuzzy identification techniques is usually expressed in terms of the generalization performance of the derived neuro-fuzzy construction. Support Vector algorithms are adapted for the identification of a Support Vector Fuzzy Inference (SVFI) system that obtains robust generalization performance. However, these SVFI rules usually lack...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Computer Science Journal of Moldova

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2002